Abstract

The charge-transfer process in noncovalent perylenediimide (PDI)/DNA complexes has been investigated by using nanosecond laser flash photolysis (LFP) and photocurrent measurements. The PDI/DNA complexes were prepared by inclusion of cationic PDI molecules into the artificial cavities created inside DNA. The LFP experiments showed that placement of the PDI chromophore at a specific site and included within the base stack of DNA led to the efficient generation of a charge-separated state with a long lifetime by photoexcitation. When two PDI chromophores were separately placed at different positions in DNA, the yield of the charge-separated state with a long lifetime was dependent upon the number of A-T base pairs between the PDIs, which was explained by electron hopping from one PDI to another. Photocurrent generation of the DNA-modified electrodes with the complex was also dependent upon the arrangement of the PDI chromophores. A good correlation was obtained between observed charge separation and photocurrent generation on the PDI/DNA-modified electrodes, which demonstrated the importance of the defined arrangement and assembly of organic chromophores in DNA for efficient charge separation and transfer in multichromophore arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.