Abstract

Gain properties of dc and ac photocurrent generated between two Schottky barriers coplanarly placed on silicon metal-semiconductor-metal photodetector have been investigated experimentally. The test structure has two square Mo/n-Si Schottky barrier junctions on an n-type silicon substrate with a resistivity of 9-12 Ω-cm and the junction internal separation is 20 m. The current-voltage (I-V) characteristics under illumination in visible range showed a rapid increase in the photocurrent at higher bias region. From the I-V characteristics and noise measurements, increase in photocurrent was ascribed to avalanche multiplication of carriers photogenerated in the reverse-biased Schottky junction. From observation of optical signal demodulation at low frequencies (10 kHz and 50 kHz), it was found that multiplication factor larger than 100 at 10 kHz and 30 at 50 kHz was achieved respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.