Abstract
Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The noise equivalent power of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.