Abstract

Photocurable urushiol analogues were synthesized using eugenol (an ingredient of clove oil) as the starting material. Photo-induced radical polymerization with 2,2-dimethoxy-2-phenylacetophenone as a photo-initiator took place in the film prepared from the urushiol analogue-bearing methacryloxy groups at the ends of their side chains. Successful polymerization was confirmed by infrared spectroscopy measurements of the film before and after photo-irradiation. Strain-induced elastic buckling instability for mechanical measurement tests revealed that the Young's moduli of the photo-irradiated samples were 4-5 times higher than the films without photo-irradiation. This was attributed to the formation of a highly cross-linked structure through polymerization of the methacrylic moieties and oxidative polymerization of the catechol moieties. Photo-induced surface texturing was also performed for the films prepared on a substrate using a photomask. Negative-tone patterns were successfully obtained after development by soaking in cyclohexanone over several minutes. The preparation of such patterned surfaces was of particular relevance as the obtained surface can serve as a scaffold for cell adhesion, protein immobilization, and the immobilization of other chemicals with spatial disposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.