Abstract

Photocurable nanocomposites have tremendous potential in tissue engineering, advanced manufacturing, and structural, multifunctional materials. This project investigates the effect of silica (SiO2) nanoparticle loading content on the thermal, mechanical, physical, and morphological characteristics of the nanocomposite. An increased concentration of SiO2 nanoparticles causes a decrease in the gel fraction of the nanocomposite, which, at low nanoparticle loading, degrades the thermal and mechanical properties. However, further addition (>3.8 wt %) causes an increase in the glass-transition temperature, Young’s modulus, and ultimate compressive strength. The addition of the nanoparticles had no significant effect on the hydrophilicity according to water uptake experiments. Small-angle X-ray scattering experiments, in conjunction with scanning electron microscopy and transmission electron microscopy, indicated a multimodal particle size distribution and the presence of large-scale aggregates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.