Abstract

Sustainably-sourced functional nanocellulose materials are vitally important for the green and sustainable development. Herein, we reported photocrosslinkable and hydroplasticable TEMPO-oxidized cellulose nanofiber phenyl propylene ketone ethers (TOCNPPK) films with excellent ultraviolet (UV) shielding, highly reversible processability, and extended mechanical properties, which were facilitated by green hydroxyl-yne click reaction. The introduction of conjugated aromatic ring and vinyl bonds (-C=C-) had been demonstrated the key for the improved overall performance of resultant TOCNPPK, which not only endowed the TOCNPPK with nearly 100 % UV shielding, but also enabled it to be formed into diverse 3D shapes (helix, ring and letters “N, F, U”) via the facile hydrosetting method. The photocrosslinkable-enhanced mechanical performance of TOCNPPK films was also attributed to -C=C- which could crosslink via [2π + 2π] cycloaddition reactions under UV-irradiation. The ultimate stress of TOCNPPK films was as high as 210.0 ± 22.8 MPa and the Young's modulus was 11.5 ± 0.7 GPa, much superior to those of 128.6 ± 8.5 MPa and 9.2 ± 0.6 GPa for pristine TOCN films. Furthermore, the TOCNPPK had been demonstrated as efficient nanofillers for both hydrophilic polyvinyl alcohol and lipophilic polycaprolactone to develop advanced biodegradable composite films with the integration of good water-wetting resistance, excellent UV blocking, and photo-enhanced mechanical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call