Abstract

The chlorophyll–protein complex CP43 is a proximal-antenna subunit important for excitation energy transfer from peripheral light-harvesting antenna to the Photosystem II (PSII) reaction centre. We report persistent spectral hole burning at 1.7 K in the Q y (0,0) origin and Q y (1,0) vibrational satellite bands of chlorophyll a (chl a) in CP43 isolated from higher plants. The isolated CP43 is known to possess two quasi-degenerate ‘red’ trap states. We find persistent hole burning in the primary trap exhibits a photoconversion property, with a photoproduct located well outside its inhomogeneous distribution. This photoconversion of trap chl a molecules also occurs with non-selective white light illumination. The contribution of the ‘red’ states to CP43 absorption is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.