Abstract

The wetting characteristics of surfaces of polymers doped with photochromic spiropyran molecules can be tuned when irradiated with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded nonpolar spiropyran molecules convert to their polar merocyanine isomers. The process is reversed upon green laser irradiation. Structuring of the photochromic polymeric surfaces with soft lithography enhances significantly the hydrophobicity of the system, indicating that the water droplets on the patterned features interact with air that is trapped in the microcavities, thus creating superhydrophobic air-water contact areas. Furthermore, the light-induced wettability variations of the structured surfaces are enhanced by a factor of 3 compared to those on the flat surfaces. This significant enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.