Abstract

A photocontrolled resonance decrease in microhardness, which is due to the application of mutually perpendicular static and microwave fields, in γ-irradiated KCl:Fe crystals has been revealed. It has been found that the magnetic plasticity of unirradiated γ-KCl:Fe crystals is due to the resonance effect of magnetic fields on two types of impurity centers: first, centers containing Fe2+-νc ion-vacancy pairs and, second, centers containing Fe+ ions. The illumination of γ-KCl:Fe crystals with F-light (with a wavelength of λ = 500–600 nm) is accompanied by rearrangement of the spectrum of electron paramagnetic resonance detected by a change in microhardness. The effect of F-light on the spectrum of magnetic resonance plasticity is manifested as the suppression of the spectra of Fe2+-νc ions with effective g-factors of 7.0 and 3.5 due to their recombination with F-electrons and reconstruction to Fe+ centers with g-factors of 2.2 and 4.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call