Abstract

Three (bola)amphiphilic spirooxazines have been synthesized and their photochromism has been characterized. The large biphotochromic structure of 2 significantly affects its conformational flexibility and the rate constants for thermal ring closure are particularly dependent on the lipid phase state. Two comprehensive ion permeation studies were performed to examine the effect of spirooxazine inclusion and isomerization on membrane permeability. In all cases, the open-ring isomers of these spirooxazines are more disruptive in bilayer membranes than their closed-ring isomers. Further, the rate of ion permeation and net release are highly dependent on the lipid bilayer phase state and the relative position of the photochromic moiety in the bilayer membrane. Moreover, the difference in potassium ion permeability under UV and visible irradiation is more pronounced than previously reported photoresponsive membrane disruptors with reversible photocontrols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call