Abstract

AbstractIn this study, we explored the behavior of protonated polyaniline/graphene oxide (PANI‐CSA/GO) nanocomposite films with varying GO concentrations, focusing on the novel phenomenon of explosive percolation. We observed a significant increase in electrical conductivity at the explosive percolation threshold, attributed to the emergence of a percolating metallic pathway. This discovery positions PANI‐CSA/GO films as promising materials for various electronic and electrical engineering applications. Additionally, the films demonstrated consistent and repeatable photoconductivity, showing potential for use in high‐performance UV‐photodetectors, photoactive layers in solar cells, light‐emitting diodes, and energy storage devices. Structural analyses using fourier transform infrared spectroscopy (FTIR) and x‐ray diffraction (XRD) confirmed successful GO incorporation within the PANI‐CSA matrix. Different morphological features were observed depending on the GO volume fraction, with increased GO enhancing thermal stability in the conductive zone. Our findings highlight the immense potential of PANI‐CSA/GO nanocomposite films in advanced electronic applications, emphasizing their novel conductive and photoconductive properties and improved thermal stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.