Abstract
Charge-transfer complex crystals have been extensively studied because of their metallic conductivity, photoconductivity, ambipolar charge transport, and high career mobility. Numerous studies of their applications for organic electric devices such as organic field effect transistors and solar cells have reported. However, bulky single crystals of charge-transfer complexes are difficult to handle, specifically to be made into a form of a thin film. Recently, nano/micro crystallization of charge-transfer crystal is attracted to realize thin film applications. In this paper, charge transfer complex nanorods composed of dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) were prepared by the reprecipitation method. The as-formed nanorods possess a kinetically metastable crystal structure different from the thermodynamically stable bulk crystal prepared by slow evaporation of the solvent. From photoconductive measurement, nanorod stacks show a significant photosensitivity (354.57 μA/W) on par with bulk crystal (417.14 μA/W). These results suggest dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) nanorods have a favorable crystal structure for carrier transport due to the difference of molecular stacking assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.