Abstract

Photoconduction and magnetic field effect on photoconduction have been investigated as a function of electric field strength, excitation light intensity and wavelength in vacuum evaporated films of m-MTDATA (4,4′,4″-tris(N-(3-methylphenyl)-N-phenylylamino) triphenylamine), the starburst amine commonly used as hole-transporting material in organic light-emitting diodes. The photocurrent is found to be generated by the singlet exciton dissociation at the illuminated Al anode/m-MTDATA interface in accordance with the 1-D Onsager mechanism and in the bulk of the sample in terms of the 3-D Onsager model of e–h pair separation. The surface component of photocurrent is magnetic field independent whereas the bulk-generated photocurrent is influenced by external magnetic field of the hyperfine coupling (HFC) as well as fine structure modulation (FSM) scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.