Abstract

The origin of the extraordinary high redox potential of P680, the primary electron donor of Photosystem II, is still unknown. Photochemically induced dynamic nuclear polarisation (photo-CIDNP) 13C magic-angle spinning (MAS) NMR is a powerful method to study primary electron donors. In order to reveal the electronic structure of P680, we compare new photo-CIDNP MAS NMR data of Photosystem II to those of Photosystem I. The comparison reveals that the electronic structure of the P680 radical cation is a Chl a cofactor with strong matrix interaction, while the radical cation of P700, the primary electron donor of Photosystem I, appears to be a Chl a cofactor which is essentially undisturbed. Possible forms of cofactor-matrix interactions are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.