Abstract

A photomagnetic ultrathin film consisting of an azobenzene, a deoxyribonucleic acid, and Prussian Blue has been fabricated by the Langmuir–Blodgett method. Prussian Blue layers in the films were a two-dimensional structure with the height of 50 Å and the average coherence length of 210 Å. Reversible photoisomerization of the azobenzenes was observed even in the films. The films exhibit the long-range ferromagnetic order below 4.2 K and moreover, upon photoillumination at 2 K, reversible changes in the magnetization were realized with the value of ca. 1.0%. This photoswitching in the magnetization is due to changes in the electrostatic field induced by photoisomerization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.