Abstract

It is still challenging to construct novel photochromic and photomagnetic materials in the field of molecular materials. Herein, the 2,4,6-tris-2-pyridyl-1,3,5-triazine (TPTz) molecule was found to display photochromic properties under room temperature light irradiation. Two mononuclear structures, [Ni(H2O)(TPTz)(C2O4)]·2H2O (1; C2O42- = oxalate) [Ni(H2O)(TPTz)(C2O4)]·0.5H2O (2), and one chain compound [Ni(TPTz)(H2-HEDP)]·2H2O (3; HEDP = hydroxyethylidene diphosphonate) were obtained by assembling TPTz with polydentate O-ligands (oxalate and phosphonate) and the paramagnetic Ni2+ ions. The electron-transfer (ET)-dominated photochromism was observable in 1 and 2 after light irradiation with the photogeneration of relatively stable radicals, and the resultant photochromism was demonstrated via UV-vis, photoluminescence, X-ray photoelectron spectra, electron paramagnetic resonance spectra, and molecular orbital calculations. Due to the denser stacking interactions between the adjacent organic molecules, 2 exhibited a faster photochromic rate than 1. Compared with 1 and 2, compound 3 did not show photochromic behavior, which was deciphered by the theoretical calculations for all of the compounds. Importantly, the magnetic couplings appeared between photogenerated radicals and paramagnetic Ni2+ ions, resulting in a scarcely photomagnetic phenomenon of 1 and 2 in the Ni-based electron transfer photochromic materials. This work enriches the available kind of ligands for the design of ET photochromic materials, putting forward a method to tune the electron transfer photochromic efficiency in the molecular materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.