Abstract
The fabrication of hybrid core-shell nanoassemblies involving a nondoped azo photochromic core coated with a dense shell of gold nanoparticles is reported to investigate the influence of localized plasmons onto the azo core photoisomerization. Photochromic organic nanoparticles, regarded as a novel class of high-density photoswitchable nanomaterials, are first elaborated upon precipitation in water of push-pull azo molecules, containing sulfur-terminated units to chelate gold nanoparticles. Photoisomerization studies of the azo nanoparticles reveal significantly higher E → Z photoconversion yields and Z → E thermal back relaxation rate constants compared to those of dyes processed as thin films and in solution, respectively. These unexpected results are ascribed to the large surface-to-volume ratio and cooperative effects encountered in nanoparticles that deform without disassembling under polarized illumination as a result of the weak change in the azo dipole moment. UV-vis spectroscopy and Raman microscopy of the hybrid nanoassemblies show strong optical coupling between both photoactive constituents, confirming that gold nanoparticles are tightly positioned on the azo core surface. Such coupling causes partial quenching of the azo photoisomerization but does not impact the thermal back relaxation. Longer sulfur-terminated chains provide reduced quenching of the photoreaction by the localized plasmons, thereby opening perspectives toward plasmon-mediated deformation of nano-objects for light-controlled nanomechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.