Abstract

A photochromic immunoassay was built for tumor marker detection based on ZnO/AgI nanophotocatalyst. Frist, ZnO/AgI nanoparticles were synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectrometry(FTIR). The color development is caused by tetramethyl benzidine (TMB) solution oxidated by ZnO/AgI nanomaterials. The electron transitions in ZnO/AgI nanomaterials are driven by visible light irradiation, generating photogenerated hole and oxidizing TMB to blue solution. Appropriate band width between ZnO and AgI promotes separation of photogenerated electrons and holes and enhances oxidation efficiency. A sandwich-type immunoassay was constructed based on ZnO/AgI nanomaterial as labels. The absorbance at 650nm of reaction solution is positively correlated with antigen concentration. The developed immunoassay showed good performance for carcinoma embryonic antigen (CEA) detection in the range 0.1-7.0ng/mL with a detection limit of 65 pg/mL. Thephotochromic immunoassay also exhibited preferable selectivity, repeatability, and stability. A novel colorimetric immunoassay was constructed based on ZnO/AgI photocatalyst. ZnO/AgI nanomaterials occur electron transitions under visible light irradiation and generate photogenerated hole, which can oxidize TMB to blue solution. Carcinoembryonic antigen in sample was detected sensitively due to the high catalytic efficiency of ZnO/AgI nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call