Abstract

We present studies of fluorescence photomodulation and solvatochromism in nanoparticles of the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped with a photochromic spirooxazine dye. The fluorescence properties of doped nanoparticles with dyes in the spirooxazine form are identical to those in undoped control nanoparticles. UV irradiation converts some of the dyes to their visible-absorbing merocyanine form, which is an efficient quencher of MEH-PPV fluorescence. The fluorescence intensity of the nanoparticles drops to less than 10% of its initial value and recovers when the merocyanines undergo thermal reversion to spirooxazines. The fluorescence modulation can be cycled many times without fatigue or photodegradation, and the degree of quenching is linear with merocyanine concentration. The photochromic conversion can also be used as a probe of the environment within the nanoparticles as both the kinetics of the thermal merocyanine-to-spirooxazine conversion and...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call