Abstract

Although being an efficient photochromic compound which absorbs in the blue in its stable form and in the orange in its photoactivated form, the mercury dithizonate complex is shown to be a poor optical limiter for nanosecond laser pulses at the wavelengths where both isomers absorb. Optical limiting effect, which is a consequence of reverse saturable absorption due to the photoactivated form, is demonstrated to be weak because of the back photobleaching of this form, which is important all the more as the laser intensity is high. Numerical integration of the spatiotemporal evolution of the laser beam intensity across the solution helps the understanding of the respective roles of the laser fluence and pulse duration. Finally, we draw the conclusion that photochromic compounds can only be used as optical limiters if the time constant for the back photochemical reaction is slow compared to the pulse duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.