Abstract

Photochromic and nonphotochromic luminescent bipyridinium-based supramolecular isomers [Cd(CPBPY)(BDC)(H2O)]n (1) and {[Cd(CPBPY)(BDC)]·H2O}n (2) (CPBPY = N-(3-carboxyphenyl)-4,4'-bipyridinium, BDC= terephthalate) have been successfully obtained by solvothermal reactions at 100 °C via tuning stoichiometric ratios of starting reagents. Isomer 1 features (4,4)-topological layer constructed by edge-shared Cd2 SBUs and BDC linkers attached by N-pendent CPBPY groups. Isomer 2 has (6,3)-topological layers with Cd atoms as nodes and BDC and double CPBPY as linkers, which are 4-fold interpenetrated into 3D network. Although both 1 and 2 contain bipyridinium ligands, only isomer 1 possesses reversible photochromic behavior with quick-switchable luminescence in the solid state. Compound 2 does not show photochromic behavior even after exposure to UV light for more than 2 h. Photochromism process of 1 originates from photostimulated reduction of CPBPY ligands to generate CPBPY(•-) radicals after irradiation, confirmed by EPR spectra. Careful check on structure reveals that the offset π-π stacking interaction between the pyridine ring of CPBPY and benzene ring of BDC with inter-ring shortest C···C distance of 3.214 Å in 1 is responsible for electron transfer to form the CPBPY(•-) radicals. The speculation is further supported by DFT calculation of frontier orbital matching of electron donor and acceptor. HOMO and HOMO-2 orbitals of BDC involve the carbon atoms of benzene ring while LUMO and LUMO+1 orbitals of CPBPY involve the carbon atoms of pyridinium ring. Importantly, the photoinduced formed CPBPY(•-) radicals in 1 have a long-lived lifetime (at least six months in air and room temperature condition), which is mainly attributed to the close packing mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.