Abstract

The photochemistry of Criegee intermediates plays a significant role in atmospheric chemistry, but it is relatively less explored compared with their thermal reactions. Using multireference CASPT2 electronic structure calculations and CASSCF trajectory surface-hopping molecular dynamics, we have revealed a dark-state-involved A1A → X1A photoisomerization channel of the simple Criegee intermediate (CH2OO) that leads to a cyclic dioxirane. The excited molecules on the A1A state, which can have either originated from the B1A state via B1A → A1A internal conversion or formed by state-selective electronic excitation, is driven by the out-of-plane motion toward a perpendicular A/X1A minimal-energy crossing point (MECI) then radiationless decay to the ground state with an average time constant of ∼138 fs, finally forming dioxirane at ∼254 fs. The dynamics starting from the A1A state show that the quantum yield of photoisomerization from the simple Criegee intermediate to dioxirane is 38%. The finding of the A1A → X1A photoisomerization channel is expected to broaden the reactivity profile and deepen the understanding of the photochemistry of Criegee intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call