Abstract

The review is dedicated to the photochemical reactions of radical cations (RC) of various organic oxygen-containing compounds stabilized in low-temperature matrices. The nature of RC and the products of their photochemical reactions has been established via quantum chemistry, electron paramagnetic resonance (EPR) and low-temperature optical spectroscopy. Depending on the structure of the precursor molecule, various mechanisms of photoconversion arise for these RC: charge transfer to matrix molecules, hydrogen atom and proton transfer, isomerization, dissociation. This study allowed us to posit that there is no correlation between the structure of the molecule of the precursor molecule and the variety of available phototransformation channels for the corresponding RC in frozen matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.