Abstract

Naturally strong ultraviolet irradiation at high altitudes causes photobleaching of plateau lake DOM (P-DOM) and affects its photochemical activity. However, the photoreactivity of P-DOM has remained unclear under natural photobleaching condition. Here, six P-DOM samples isolated from plateau lakes in Yunnan Province, China as well as two reference DOM as comparisons were used to explore the photogeneration of reactive species (RS) and their effects on 17β-estradiol photodegradation. Compared with SRHA/SRFA, P-DOM has lower aromaticity, average molecular weight, and electron-donating capacity. The quantum yields of triplet state P-DOM (3P-DOM*), 1O2, and ∙OH produced in P-DOM solutions were greatly higher than those of reference DOM. The RS quantum yields had positive linear correlations with E2/E3 and SR, whereas were negatively linear correlated with SUVA25. Radical quenching experiments showed that 3P-DOM* was the prominent RS for 17β-estradiol photodegradation, and its contribution exceeded 70% for each of P-DOM. 3P-DOM*-mediated photodegradation was mainly attributed to the electron-transfer reactions with an average second-order rate constant of 4.62 × 109 M-1s-1, indicating the strong photoreactivity towards 17β-estradiol. These findings demonstrate that P-DOM is an efficient photosensitizer for RS production, among which 3P-DOM* may play an important role in enhanced photodegradation for organic micropollutants in plateau lake enriched with DOM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call