Abstract
Recent studies have indicated that nitramide (NH2NO2) may be formed more plentifully in the atmosphere than previously thought, while also being a missing source of the greenhouse gas nitrous oxide (N2O) via catalyzed isomerization. To validate the importance of NH2NO2 in the Earth's atmosphere, the ground and first electronic excited states of NH2NO2 were characterized and its photochemistry was investigated using multireference and coupled cluster methods. NH2NO2 is non-planar and of singlet multiplicity in the ground state while exhibiting large out-of-plane rotation in the triplet first excited state. One-dimensional cuts of the adiabatic potential energy surface calculated using the MRCI+Q method show low-lying singlet electronic states with minima in their potential along the N-N and N-O bond coordinates. Due to vertical excitation energies in the 225-180nm region, photochemical processes will not compete in the troposphere, causing N2O production to be the predicted major removal process of NH2NO2. In the upper atmosphere, photodissociation to form NH2NO + O (3P) is suggested to be a major photochemical removal pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.