Abstract
The photochemistry of N-methylformamide (MF) is elucidated by investigating its photodissociation products generated by UV irradiation (248 nm) in an argon matrix (10 K). We find that, starting from trans-MF, prolonged irradiation produces cis-MF, CH3NH2 and CO fragments as major products. Another photoproduct is identified as methylformimidic acid (FIA). Nonadiabatic dynamics simulations starting from both MF conformers revealed that the internal conversion occurs within 1 ps through a C-N dissociation channel. The major product is a weakly bound complex between CH3NH and HCO radicals. This complex owes its existence to the cage effect of the matrix which allows for H-transfer reactions and recombination. By identifying the primary photoisomerization and photodissociation pathways of MF, we gain new insights into the photochemistry of peptide bonds in general, which is a prerequisite for a better understanding of the effect of UV irradiation on living systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.