Abstract
The products formed during exposure of the CH3CONHOH/Ar (AHA/Ar) matrices to the full output of the Xe lamp and to 225 nm OPO radiation are studied. The irradiation promotes the isomerization, 1Z → 1E, and AHA photodissociation reactions. Four pairs of coproducts are experimentally found to appear in the photolysis, they form the complexes: CH3OH···HNCO (1), H2O···CH3NCO (2), H2O···CH3CNO (3) and CO···CH3NHOH (4). The structures of the complexes were optimized at the MP2 computational level with the 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Three local minima were predicted for the complex (1), two for the complexes (2) and (3) and four local minima were found for the complex (4). The comparison of the theoretical spectra with the experimental ones allowed us to determine the structures of the complexes formed in the matrix. The mechanisms of the reaction channels leading to formation of the four coproducts are proposed. It is concluded that the first step in formation of the (1), (2) and (3) complexes is the scission of the N-O bond whereas the creation of the complex (4) is due to the cleavage of the C-N bond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.