Abstract
Photolysis (λ > 613 nm) of 1-(3-thienyl)diazoethane (21) yields the s-E rotamer of triplet 1-(3-thienyl)ethylidene (3), as characterized by UV/vis and EPR spectroscopy. The s-Z rotamer of 3 was not observed. EPR and UV/vis signals attributed to carbene 3 decrease by approximately 50% upon standing in the dark for 68 h at 10 K. Although formally spin-forbidden, an intramolecular [1,2]-hydrogen shift in triplet carbene 3 to afford singlet s-E 3-vinylthiophene (8) is presumed to occur via quantum mechanical tunneling. The behavior of the CD3 analogue supports this interpretation. Photolysis (λ > 613 nm) of 1-(3-thienyl)diazoethane-d3 (21-d3) yields triplet 1-(3-thienyl)ethylidene-d3 (3-d3), as characterized by IR, UV/vis, and EPR spectroscopy. No change in the signal intensity of EPR and UV/vis signals of triplet 3-d3 is observed upon standing in the dark for 68 h at 10 K. In a series of 2-substituted thienyl derivatives, irradiation of 1-(2-thienyl)diazoethane (22), 1-(2-thienyl)diazoethane-d3 (22-d3), or (3-methyl-2-thienyl)diazomethane (23) does not yield triplet carbene intermediates. Positioning and labeling of the methyl group proved to have a large effect on products observed for these species. 1-(2-Thienyl)diazoethane (22) yields the products of [1,2]-hydrogen migration, s-Z and s-E 2-vinylthiophene (7), while 22-d3 and 23 give products derived from opening of the thiophene ring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.