Abstract

Herein, we report a discovery that photochemical vapor generation (PCVG) of halides (bromide, chloride, and fluoride) can be realized in organic-acid-free media, with figures of merit comparable to those in classical scenarios employing acetic acid. Metal acetates, copper salts, and mixtures of different acetates and copper salts were evaluated for their performance in facilitating PCVG of halides; the formation of copper acetate complexes turned out to play a crucial role. Methyl halides (CH3X, X = Br, Cl, F) were identified by gas chromatography-mass spectrometry (GC-MS) as principal volatile compounds. Several important intermediate species, including cuprous ions (Cu+), methyl (•CH3), and hydroxyl (•OH) free radicals, were confirmed using cuproine, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), and coumarin as a chromogenic agent, radical tracer, and fluorescence probe based on UV-vis, GC-MS, and fluorescence spectroscopy, respectively. The ligand to metal charge transfer (LMCT) between acetate and copper and the charge transfer to solvent (CTTS) excitation of halides were considered to account for the generation of methyl halides in organic-acid-free media. The presence of 100 and 200 μg mL-1 of CuAc2, as well as sample delivery rates of 10.7 and 3.3 mL min-1, yielded limits of detection of 0.03 and 3 μg L-1 for Br- and Cl-, respectively, by inductively coupled plasma mass spectrometry (ICPMS). The method was applied to the analysis of bottled water and seawater, achieving spike recoveries between 92 and 101%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.