Abstract
Constraining the formation mechanisms of organic matter that persists in aquatic reservoirs is important for determining the reactivity and fate of carbon and nutrients in these environments. Recent studies have linked dissolved organic matter (DOM) accumulating in the ocean to linear terpenoid structures, and carotenoid degradation products have been proposed as potential precursors. The prevalence of reactive oxygen species in aquatic environments and their potential to be quenched by carotenoids led us to examine radical-assisted photochemical degradation of carotenoids as a potential mechanism for DOM formation and transformation. Experiments were conducted with aggregates of β-carotene, astaxanthin, fucoxanthin and meso-zeaxanthin in THF:H2O under solar light irradiation assisted by hydrogen peroxide (UV–Vis/H2O2). Based on the fine structure of UV–Vis spectra, it was determined that β-carotene and meso-zeaxanthin formed J-type aggregates in experimental solutions, while astaxanthin and fucoxanthin formed H2-type aggregates, consistent with their structural characteristics. All carotenoids degraded under the combined influence of photolysis and OH scavenging, with fucoxanthin exhibiting the fastest degradation kinetics (kPO = 3.69 10−3 s−1) and meso-zeaxanthin the slowest (kPO = 4.37 10−4 s−1). The major degradation products detected by electrospray ionization (ESI) tandem mass spectrometry (MS/MS) were apo-aldehydes and apo-ketones, with the latter tending to accumulate, but epoxidation of the carotenoids also took place, and longer irradiation times resulted in lower molecular weight products. Reaction kinetics and accumulating carotenoid oxidation products identified in this study provide potential formation mechanisms and biomarkers for examining DOM cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.