Abstract
Photochemical upconversion is a strategy for converting infrared light into more energetic, visible light, with potential applications ranging from biological imaging and drug delivery to photovoltaics and photocatalysis. Although systems have been developed for upconverting light from photon energies in the near-infrared, upconversion from below the silicon bandgap has been out of reach. Here, we demonstrate an upconversion composition using PbS semiconductor nanocrystal sensitizers that absorb photons below the bandgap of silicon and populate violanthrone triplet states below the singlet oxygen energy. The triplet-state violanthrone chromophores luminesce in the visible spectrum following energy delivery from two singlet oxygen molecules. By incorporating organic chromophores as ligands onto the PbS nanocrystals to improve energy transfer, we demonstrate that violanthrone upconverts in the absence of oxygen by the triplet–triplet annihilation mechanism. The change in mechanism is shown by exploiting the magnetic field effect on triplet–triplet interactions. Photochemical upconversion of light with photon energy below the silicon bandgap has remained elusive, but the feat has now been demonstrated using PbS semiconductor nanocrystals and violanthrone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.