Abstract

Films of the copolymer, 11 wt % 1-{4-(2-methacroyloxyethoxyphenyl}-2-phenyl-1,2-ethanedione (BZMA) and styrene (S) (BZMA/S), as well as polystyrene (PS) doped with either the BZMA monomer (BZMA-PS) or 1-{4-(2-acetyloxyethoxy-phenyl}-2-phenyl-1,2-ethanedione (BZAc-PS) in concentrations that match the composition of the copolymer, have been irradiated (λ > 400 nm) in the presence of molecular oxygen at ambient temperatures. The rates of consumption of BZMA and BZAc and the concurrent formation of the corresponding benzoyl peroxide-containing units (BPMA and BPAc) were followed by infrared spectroscopy. The rates of benzil-group consumption and peroxide formation matched each other and were virtually the same in the three film types. Larger concentrations of oxygen increased the rate of consumption of BZMA. From a kinetic treatment of data at two concentrations of oxygen in PS, it is concluded that BZMA photooxidation is more than 10 times faster than that of benzil. At 91 °C, the first-order rate constants ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.