Abstract
Biomass combustion results in the formation and wide distribution of black carbon (BC) in soils, wherein the dissolved fractions are among the most active components. Although the presence of dissolved black nitrogen (DBN) in BC has been identified, its environmental behavior and implication are not understood. This study investigated the photochemical transformation and catalytic activity of DBN under simulated solar irradiation. DBN is more easily transformed than dissolved BC due to its photoactive heteroaromatic N structure, and the half-life of DBN produced at 500 °C (8.6 h) is two times shorter than that of the dissolved BC counterpart (23 h). Meanwhile, solar irradiation is favorable for the homoaggregation of DBN. During irradiation, DBN generates not only reactive oxygen species (e.g., 1O2, O2-, and •OH) but also reactive nitrogen species (mainly •ON), which account for its higher photocatalytic degradation of bisphenol A than dissolved BC. These findings shed new light on the impact of heteroatoms on the phototransformation and activity of BC as well as cycling of N in terrestrial systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.