Abstract

Peripheral nerve transection initiates a complex molecular response in the severed nerve endings, resulting in the release of neurotrophic and neurotropic factors that are central to axonal survival and regeneration. In this study we tested the hypothesis that sealing the neurorrhaphy site from the surrounding environment using a photochemically bonded nerve wrap would optimize the endoneural environment and enhance regeneration and nerve function recovery. Adult rats underwent unilateral sciatic nerve transection and standard epineural nerve repair. The repair site was wrapped with amniotic membrane or autologous vein and then was either sealed using photochemical tissue bonding (PTB) or secured with sutures. Photochemical sealing without a wrap was also carried out. Functional recovery was assessed at 2-wk intervals using walking track analysis and nerve histomorphometry was assessed at 12 wk. Treating nerves with PTB-sealed amnion significantly improved functional recovery and increased distal axon and fiber diameters and myelin thickness compared to nerves treated with standard neurorrhaphy alone. Direct PTB sealing of the repair site also improved function. Neither amnion secured with sutures nor vein wraps exhibited improved functional or histological recovery compared to standard neurorrhaphy. These results suggest that sealing the peripheral nerve repair site with amnion using a photochemical technique may lead to earlier restoration of neural homeostasis and consequent enhanced repair of nerve injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.