Abstract

The GABA type A receptor (GABA(A)R) is the major inhibitory receptor in the mammalian central nervous system and the target of numerous pharmaceuticals. The alpha-subunit of these pentameric Cys-loop neurotransmitter-gated ion channels contributes to the binding of both GABA and allosteric modulators such as the benzodiazepines, suggesting a role for this subunit in the conformational changes associated with activation of the receptor. Herein we use the nonsense suppression methodology to incorporate a photoactivatable unnatural amino acid and photochemically cleave the backbone of the alpha subunit of the alpha(1)beta(2) GABA(A)R in a linker region that is believed to span the subunit. Proteolytic cleavage impairs GABA but not pentobarbital activation, strongly suggesting that conformational changes involving this linker region are critical to the GABA activation pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call