Abstract
Camptothecin (CPT) is an anticancer drug that inhibits topoisomerase I (Topo I) by forming a ternary DNA-CPT-Topo I complex. However, it has also been shown that UVA-irradiated CPT in the absence of Topo I produces significant DNA damage to cancer cells. In this work, we explored and identified free radicals generated in these processes. From the low-temperature EPR spectrum of Cu(II)-CPT complex, a proximity between Cu(II) ion and 20-hydroxy group of lactone E ring of CPT is proposed. Upon irradiation (lambda = 365 nm) of the Cu(II)-CPT complex in de-oxygenated dimethylsulfoxide (DMSO), the EPR signal of Cu(II) measured in situ at room temperature shows formal first-order exponential decay with a formal half-life of 11 min. By the use of a specific Cu(I) chelating agent, neocuproine, it was shown that, during this process, Cu(II) is reduced to Cu(I). The loss in EPR signal intensity of the Cu(II)-CPT complex upon irradiation is accompanied by the appearance of a new EPR signal at g approximately 2.0022. Application of the spin trap nitrosodurene (ND) revealed that the main radical product formed upon continuous irradiation of CPT in DMSO solutions is the hydroxyl radical (trapped in DMSO as the *CH3 adduct) and superoxide radical. Application of 2,2,6,6-tetramethyl-4-piperidinol has revealed that irradiation of CPT in aerated DMSO solution also leads to formation of singlet oxygen (1O2). Our spectroscopic experiments indicate that CPT is a promising photosensitizer and that radicals and singlet oxygen generated upon illumination play a central role in DNA cleavage and in the induction of apoptosis in cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.