Abstract

Temperature-programmed NO2 emissions from frozen aqueous NaNO3 solutions irradiated at 313 nm were monitored as function of nitrate concentration and heating rate, H, above -30 degrees C. Emissions increase nonmonotonically with temperature, displaying transitions suggestive of underlying metamorphic transformations. Thus, NO2 emissions surge at ca. -8 degrees C in frozen [NO3-] > 200 microM samples warmed at H = 0.70 degrees C min(-1) under continuous irradiation, and also in the dark from samples that had been photolyzed at -30 degrees C. The amounts of NO2 released in individual thermograms, SigmaN, increase less than linearly with [NO3-] or the duration of experiments, revealing the significant loss of photogenerated NO2. The actual SigmaN proportional, variant [NO3-]1/2 dependence (at constant H) is consistent with NO2 hydrolysis: 2NO2 + H2O --> NO3- + NO2- + 2H+, overtaking NO2 desorption, even below the eutectic point (-18 degrees C for aqueous NaNO3). The increasingly larger NO2 losses detected in longer experiments (at constant [NO3-]) are ascribed to secondary photolysis of trapped NO2. The relevance of present results to the interpretation of polar NO2 measurements is briefly analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.