Abstract
This report investigates the mechanism of photochemical Povarov-type reactions of N,N-dialkylanilines and maleimides in polar solvents (DMF or dioxane) in the presence of light. Fundamental aspects of the electron donor-acceptor (EDA) photoactivation pathway proposed to underpin this chemistry are examined through integrated experimental and computational studies. This approach provided evidence supporting the involvement of an EDA complex in facilitating this chemistry via a reaction mechanism that does not involve a triplet manifold. Most notably, our findings indicate that relying solely on UV-vis absorption spectroscopic data to either account for or predict reactivity in synthetic experiments may not always provide the complete picture. More specifically, this relates to considering UV-vis absorption spectroscopic data, calculated values for association constants (KEDA) and molar extinction coefficients (ε), with the reactivity observed in associated synthetic reactions in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.