Abstract

Photochemical oxidation removal of NO and SO2 from simulated flue gas of coal-fired power plants by wet scrubbing using UV/H2O2 advanced oxidation process was studied in a semicontinuous and small-scale ultraviolet (UV)-bubble column reactor with different conditions, including UV, H2O2 concentration, solution initial pH value, solution temperature, and liquid layer height. The results show that under all conditions studied, the SO2 is removed completely. The UV has an obvious impact on NO removal efficiency. With the increase of H2O2 concentration or liquid layer height, the NO removal efficiency greatly increases at first, and then the growth rate of NO removal efficiency gradually become smaller. The NO removal process is enhanced by the solution initial pH value, but it is inhibited by the solution temperature. The gaseous and liquid reaction products are determined using ion chromatography and gas analyzer, respectively. The removal path of NO and SO2 are also preliminarily discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.