Abstract

The photochemical nucleophile-olefin combination, aromatic substitution (photo-NOCAS) reaction of methanol, 7-methyl-3-methylene-1,6-octadiene ( β-myrcene, 1), and 1,4-dicyanobenzene yields five 1:1:1 adducts:cis-2-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylenecyclohexane (15), trans-2-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylenecyclohexane (16), 1-(4-cyanophenylmethyl)-4-(1-methoxy-1-methylethyl)cyclohexene (17), 4-[4-methoxy-3,3-dimethylcyclohex-(E)-1-ylidenyl]methylbenzonitrile (18), and 4-(1-vinyl-4-trans-methoxy-3,3-dimethylcyclohexyl)benzonitrile (19). All of these adducts are cyclic; variation in the product ratio as a function of methanol concentration indicates cyclization is occurring, 1,6-endo, with both the initially formed radical cation and with the intermediate β-alkoxyalkyl radicals. Evidence based upon comparison of the ionization and oxidation potential of β-myrcene with model alkenes and with conjugated dienes indicates the initial electron transfer involves the trisubstituted mono alkene moiety; the diene moiety, mono-substituted at a nodal position, has a higher oxidation potential. High-level ab initio molecular orbital calculations (MP2/6-31G*//HF/6-31G*) provide useful information regarding the nature (relative energies and charge and spin distribution) of the intermediate radical cations, which supports the proposed reaction mechanism. Key words: photoinduced electron transfer, radicals, radical cations, β-myrcene, cyclization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call