Abstract

This study presents a novel technique for the controllable preparation of photoluminescent substrates to enhance the photochemical microfluidic synthesis of vitamin D3. The dip-coating method to prepare the substrates was experimentally optimized, and the corresponding emission behaviors were systematically investigated. The substrates were successfully used to enhance the ultraviolet B (UVB) emission of a low-power light source (e.g., an 8 W lamp), whose UVB emission intensity was increased by approximately 11 times. By virtue of the novel light source, the productivity of a single set of photochemical microreactor with a 12-meter-long channel (0.6 mm i.d.) was increased to 1.83 kg·a−1, which was 42% higher than that of a 100 W lamp, and no cooling devices were used. The method is simple and has great potential to replace traditional medium-pressure mercury lamps for UVB-irradiated photochemical reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call