Abstract

We study the use of photochemical internalization (PCI) for enhancing chemotherapeutic response to malignant glioma cells in vitro. Two models are studied: monolayers consisting of F98 rat glioma cells and human glioma spheroids established from biopsy-derived glioma cells. In both cases, the cytotoxicity of aluminum phthalocyanine disulfonate (AlPcS2a)-based PCI of bleomycin was compared to AlPcS(2a)-photodynamic therapy (PDT) and chemotherapy alone. Monolayers and spheroids were incubated with AlPcS(2a) (PDT effect), bleomycin (chemotherapy effect), or AlPcS(2a)+bleomycin (PCI effect) and were illuminated (670 nm). Toxicity was evaluated using colony formation assays or spheroid growth kinetics. F98 cells in monolayer/spheroids were not particularly sensitive to the effects of low radiant exposure (1.5 J/cm(2) @ 5 mW/cm(2)) AlPcS(2a)-PDT. Bleomycin was moderately toxic to F98 cells in monolayer at relatively low concentrations-incubation of F98 cells in 0.1 μg/ml for 4 h resulted in 80% survival, but less toxic in human glioma spheroids respectively. In both in vitro systems investigated, a significant PCI effect is seen. PCI using 1.5 J/cm(2) together with 0.25 μg/ml bleomycin resulted in approximately 20% and 18% survival of F98 rat glioma cells and human glioma spheroids, respectively. These results show that AlPcS(2a)-mediated PCI can be used to enhance the efficacy of chemotherapeutic agents such as bleomycin in malignant gliomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call