Abstract

Transfusion-associated graft-versus-host disease (TA-GVHD) is a life-threatening complication caused by the input of a number of immunocompetent allogeneic lymphocytes. This study focus on the photochemical effects of riboflavin excited by visible light (RB+L) treatment on human lymphocytes, to study the feasibility of using RB+L treatment to prevent adverse immune reactions caused by transfused lymphocytes. 100μM riboflavin was added to lymphocyte suspensions. After exposure to 400–580nm visible light with a total energy of 40J/mL, cells were cultured and the ability of proliferation and cytokine secretion were assayed upon stimuli. Meanwhile, lymphocytes were also treated by gamma-irradiation as parallel to testify the inactivation effect of RB+L. Results showed that γ-irradiation and RB+L treated cells showed a decline in cell viability. After stimulation of phytohemagglutinin (PHA) or anti-CD3 together with anti-CD28, proliferative ability of RB+L treated cells was strongly inhibited when compared to untreated cells. The inhibitive rates of proliferation in RB+L group were also higher than those of cells treated by γ-irradiation. Results of CFSE assays also illustrated hardly any cell division of RB+L and γ-irradiation treated lymphocytes. Besides low level productions of IL-4 and IL-12, cytokine production of TNF-α, IFN-γ and IL-10 by incubation with PHA or IL-1β, IL-2, IL-6, IL-8, IL-10, TNF-α and IFN-γ stimulated by anti-CD3 plus anti-CD28 were suppressed after treatment of RB+L significantly. It was suggested that RB+L/γ-irradiation treatment induced cell apoptosis. These results indicated that RB+L treatment functionally inactivated lymphocytes by inhibiting cell proliferation and cytokine production. RB+L might be an alternative for TA-GVHD prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.