Abstract

This work illustrates a modified approach for employing photoinduced electron transfer reactions coupled to secondary irreversible electron transfer processes for the generation of strongly reducing equivalents in solution. Through irradiation of [Ru(LL)3](2+) (LL= diimine ligands) with tritolylamine (TTA) as quencher and various alkyl amines as sacrificial electron donors, yields in excess of 50% can be achieved for generation of reductants with E(0)(2+/1+) values between -1.0 and -1.2 V vs NHE. The key to the system is the fact that the TTA cation radical, formed in high yield in reaction with the photoexcited [Ru(LL)3](2+) complex, reacts irreversibly with various sacrificial electron donating amines that are kinetically unable to directly react with the photoexcited complex. The electron transfer between the TTA(+) and the sacrificial amine is an energetically uphill process. Kinetic analysis of these parallel competing reactions, consisting of bimolecular and pseudo first-order reactions, allows determination of electron transfer rate constants for the cross electron transfer reaction between the sacrificial donor and the TTA(+). A variety of amines were examined as potential sacrificial electron donors, and it was found that tertiary 1,2-diamines are most efficient among these amines for trapping the intermediate TTA(+). This electron-donating combination is capable of supplying a persistent reducing flux of electrons to catalysts used for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call