Abstract

Though there have been many studies on photosensitizers coupled to model complexes of the [FeFe]-hydrogenases, few have looked at how the models react upon exposure to light. To extract photoreaction information, ultrafast time-resolved UV/visible pump, IR probe spectroscopy was performed on Fe2(μ-S2C2H4)(CO)4(PMe3)2 (2b) dissolved in heptane and acetonitrile and the photochemical dynamics were determined. Excitation with 532 and 355 nm light produces bleaches and new absorptions that decay to half their original intensity with time constants of 300 ± 120 ps and 380 ± 210 ps in heptane and acetonitrile, respectively. These features persist to the microsecond timescale. The dynamics of 2b are assigned to formation of an initial set of photoproducts, which were a mixture of excited-state tricarbonyl isomers. These isomers decay into another set of long-lived photoproducts in which approximately half the excited-state tricarbonyl isomers recombine with CO to form another complex mixture of tricarbonyl and tetracarbonyl isomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.