Abstract

Dynamic deracemization processes, such as crystallization‐induced diastereomer transformations (CIDTs), offer the opportunity to combine racemization and resolution processes, to provide high yields of enantiomerically pure compounds. To date, few of these processes have incorporated photochemical racemization. By combining batch crystallization with a flow photoreactor for efficient irradiation, it is possible to perform such deracemization in an effective, scalable and high yielding manner. After applying design of experiment (DoE) principles and mathematical modelling, the most efficient parameter set could be identified, leading to excellent results in just 4 h reaction time: isolated yield of 82 % and assay ee of 96 %. Such photochemical racemization methods can serve to open new avenues for preparation of enantiomerically pure functional molecules on both small and industrially‐relevant scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.