Abstract

The single-stranded DNA-binding proteins from bacteriophage T4, F plasmid, Escherichia coli, and calf thymus can all be covalently cross-linked in vitro to thymine oligonucleotides by irradiating the respective protein-oligonucleotide complexes with ultraviolet light. More extensive studies on the E. coli single-stranded DNA-binding protein (SSB) indicate that this reaction is dependent upon both the length of the oligonucleotide and the dose of ultraviolet irradiation. Using anion-exchange and reverse-phase ion-pairing high-performance liquid chromatography we have isolated a specific cross-linked tryptic peptide comprising residues 57-62 of the SSB protein with the sequence valine-valine-leucine-phenylalanine-glycine-lysine. Solid-phase sequence analysis of the covalent [32P] p(dT)8-peptide complex indicates that phenylalanine 60 is the site of cross-linking. This amino acid is located within the general region of SSB (residues 1-115) that has previously been shown to contain the DNA-binding site (Williams, K. R., Spicer, E. K., LoPresti, M. B., Guggenheimer, R. A., and Chase, J. W. (1983) J. Biol. Chem. 258, 3346-3355). The high-performance liquid chromatography purification procedure we have devised to isolate cross-linked peptide-oligonucleotide complexes should be of general applicability and should facilitate future structure/function studies on other nucleic acid-binding proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.