Abstract

The role of matrix effects in radiolysis and photolysis is illustrated using two systems: organosulphur compounds and benzenediazonium salts. Their intermediates as detected by low temperature ESR and optical spectroscopy or FAB-MS give evidence that the main reaction pathways depend strongly on these effects. Changes in matrix acidity can control the formation of neutral radical, ion-radical or ionic species which are crucial to the character of the final products of irradiation of organosulphur compounds, which are of great importance in medicine, biology, ecology and industry. Microenvironmental influences determine whether the triplet aryl cation or radical species are detected as the principal or sole intermediates in the decomposition of diazonium salts, a process leading to different stable products with industrial application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.