Abstract

Photochemical and photophysical properties of fullerene dendrimers, in which the fullerene-moiety was connected via an acetylene bond with benzyl-ether type dendrons from the second to fourth generation, have been investigated by time-resolved fluorescence and time-resolved absorption methods, in addition to steady-state spectra. The photophysical properties of the dendrimers such as lifetimes of the singlet and triplet excited states were essentially the same, regardless of the dendrimer generation. However, the rate constants of intermolecular processes such as triplet−triplet annihilation, triplet energy transfer, and electron transfer via the triplet states decreased with the increase in dendrimer generation. The relation between the free energy changes and the quenching rate constants revealed long-range electron transfer processes due to steric hindrance of the dendron groups. Furthermore, it was revealed that the solvation of radical ion pairs is also affected by size of the dendron groups. Back el...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call