Abstract

Abstract. Water-soluble brown carbon in the aqueous core of aerosol may play a role in the photochemical aging of organic film on the aerosol surface. To better understand the reactivity and photochemical aging processes of organic coating on the aqueous aerosol surface, we have simulated the photosensitized reaction of organic films made of several long-chain fatty acids in a Langmuir trough in the presence or absence of irradiation. Several chemicals (imidazole-2-carboxaldehyde and humic acid), PM2.5 samples collected from the field, and secondary organic aerosol samples generated from a simulation chamber were used as photosensitizers to be involved in the photochemistry of the organic films. Stearic acid, elaidic acid, oleic acid, and two different phospholipids with the same carbon chain length and different degrees of saturation, i.e. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoylsn-glycero-3-phosphocholine (DOPC), were chosen as the common organic film-forming species in this analysis. The double bond (trans and cis) in unsaturated organic compounds has an effect on the surface area of the organic monolayer. The oleic acid (OA) monolayer possessing a cis double bond in an alkyl chain is more expanded than elaidic acid (EA) monolayers on artificial seawater that contain a photosensitizer. Monitoring the change in the relative area of DOPC monolayers has shown that DOPC does not react with photosensitizers under dark conditions. Instead, the photochemical reaction initiated by the excited photosensitizer and molecular oxygen can generate new unsaturated products in the DOPC monolayers, accompanied by an increase in the molecular area. The DSPC monolayers did not yield any photochemical oxidized products under the same conditions. The spectra measured with polarization modulation-infrared reflection–absorption spectroscopy (PM-IRRAS) were also consistent with the results of a surface pressure–area isotherm. Here, a reaction mechanism explaining these observations is presented and discussed. The results of PM2.5 and SOA samples will contribute to our understanding of the processing of organic aerosol aging that alters the aerosol composition.

Highlights

  • In the marine environment, the degradation of bacteria and diatoms can produce lipids, such as phospholipids, triacylglycerides, and glycolipids, which are the lipid-containing cellular components of microorganisms (Jeffrey, 1966)

  • Owing to the amphiphilic characteristics of phospholipids, the head groups of DOPC and DSPC molecules prefer to be in the solution, while their tails stretch into the air

  • The π –A isotherms recorded for the DOPC and DSPC monolayers on artificial seawater with and without photosensitizers are shown in Fig. 2a and b, respectively

Read more

Summary

Introduction

The degradation of bacteria and diatoms can produce lipids, such as phospholipids, triacylglycerides, and glycolipids, which are the lipid-containing cellular components of microorganisms (Jeffrey, 1966). Photosensitizers can contribute to organic aerosol aging and growth when generating a triplet excited state that can oxidize hydrocarbon upon absorbing light. These photosensitized reactions have been shown in the laboratory to induce to an abiotic source of volatile organic compounds (VOCs) and secondary organic aerosols (SOA) in the marine boundary layer (Rossignol et al, 2016; Tinel et al, 2016; Bernard et al, 2016). The photochemistry of such organic films is attracting increasing attention, as the photosensitized reaction initiated by atmospheric samples containing BrC has not been investigated and the associated mechanism is not understood. The stability behaviour of these organic films under irradiation and the impact of photosensitizers on organic aerosol aging are presented and discussed

Materials and solutions
Chamber sample preparation
Calculation of the mass absorption coefficient
Langmuir and irradiation experiments
Packing and phase behaviour of lipid monolayers
Stability of lipid monolayers under irradiation
Atmospheric implication
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.